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The Fourier, Hankel and Gauss transformations of atomic scattering factors, expressed in ana- 
lytical forms obtained from the electronic wave functions and from the Thomas-Fermi method, are 
discussed. These transformations, in three dimensions and in projection, are applied to observe 
the effect of thermal vibrations on the electron distribution in all atoms, in connection with the 
accuracy of atomic co-ordinates in the electron-density maps and with the series-termination 
effect in X-ray Fourier methods. 

Some of the important results are as follows. All atomic scattering factors can be expressed in 
the closed form _.~' H/(s2+E) n, where E and H are independent of s --- 2 sin 0/2. The iso-electronic 

n 

atoms such as F -  and O = may  well be distinguishable from the peak values of the electron-density 
distribution. The Thomas-Fermi method is found to be a satisfactory approximation even for the 
lighter atoms, provided that  their thermal vibrations are large. The following relation between the 
peak height, @n(0), and the peak curvature, qn'(0), may be useful for the refinement of the tem- 
perature factor 

16~20@n(O)/OB = n@n'(0) , 

where n is the dimension of the projection. The possibility for the determination of the characteristic 
temperature, using the electron-density data from X-ray methods, is suggested. The agreement 
between the observed and calculated values of the electron-density function is quite reasonable. 

1. Introduction 

I t  is our hope to contr ibute to the theory of molecular 
s tructure by  reproducing precisely the electron distri- 
but ion of atoms in X-ray  Fourier  maps. Efforts have 
been made  to elucidate the electron densi ty  not  only 
of the hydrogen atom but  also of valence electrons. 
However, the electron densi ty  of an atom at rest m a y  
not  be obtained exper imenta l ly  even at the absolute 
zero temperature ,  because of its zero-point vibrations.  
:Nevertheless, from the knowledge of these vibrat ional  
effects, one m a y  deduce informat ion useful to molec- 
ular  theories and to latt ice dynamics.  

In  the  present paper, the electron densi ty  of an atom 
is expressed by  the Fourier, Hanke l  and Gauss (or 
s imply  Four ie r -Hankel -Gauss)  t ransformat ions of the 
atomic scat tering factor modified by  the D e b y e -  
Waller  tempera ture  factor. All atomic scattering fac- 
tors are expressed in analyt ica l  forms using either the 
electronic wave functions or the Thomas -Fe rmi  (TF) 
method.  Since reliable da ta  on the valence-electron 
densi ty  in the X- ray  Fourier  maps  are not  available,  
most  of the present  numerical  results are given for the 
peak values of the electron density. However, the 
equations for the valence electrons are given in their  
general  forms. 

Higgs'  t r ea tment  on the carbon atom (1953) was 
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directed along the same line, a l though the methods of 
t ransformat ion  and some of the results in the present 
paper  are different  and are readi ly  applicable to all 
atoms. McDonald 's  paper  on the hydrogen atom (1956) 
appeared recently.  Since some addi t ional  results were 
obtained,  the hydrogen atom will also be discussed 
here as a special case. 

2. Analyt ical  f o r m s  of the a tomic  scatter ing 
factors  

The atomic scattering factor is expressed by  

S f(s) = 4~r2@(r) sin 2~sr dr 
o 2xesr ' (1) 

where @(r) is the radial  electron densi ty  and is as- 
sumed to have  spherical  symmet ry ,  r is the distance 
in crystal  space in /~ and s = 2 sin 0/A is the distance 
in reciprocal space in A -1. 0 is the Bragg reflection 
angle and  ~t is the wavelength of the radiat ion in A. 

The Slater wave functions (Slater, 1930; Duncanson 
& Coulson, 1944) and Paul ing 's  hydrogen-l ike wave 
functions (Pauling & Sherman,  1932) both give, in 
general, a radial  densi ty  funct ion of the form, 

@(r) = 2:kr n exp ( - c r ) ,  (2) 

where the values of k, n and c depend on both the  
quan tum number  of the electron and the form of the 
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wave function chosen. The f-factor  for the radial 
. densi ty distr ibution of kr '~ exp ( -cr)  is* 

2{ (n+  1)!}k sin {(n+2) arc tan  (2:~s/c)} 
f(s) = s (47~2s2+c2) ~/2+1 , (4) 

where n is an integer. Equat ion  (4) can also be ex- 
pressed in a finite-series form as 

f(s) = 2 { ( n + l ) ! } k ~  c ~,+2 
8 [ 4 7 ~ 2 8 2 + C 2 J  

× : (--1)m(n+2)(2-~-s~ 2m+1, 
(5) 

0<2re<n+1 \2m + 1 / \ c /  

( 
where \ 2 r e + l / i s  the binomial coefficient. I t  may  be 

noted t ha t  the  results of Pauling & Sherman (1932) 
and of McWeeny (1951) can be summarized by equa- 
t ion (5). In  particular,  if n = 0, equations (4) and (5) 
are for the hydrogen-like atom. 

For  heavy  atoms, the TF  method ma y  be used. 
Applying the Rozenta l -approximat ion formulae to the 
TF  function (Rozental, 1935), Umeda (1951)obtained 

f(s) = Z 5/3 ~: anfl~_ 
7 82"~-#n Z213 ' (6) 

where Z is the atomic number  and ~ a , ~  = 1. The 
constants  without  units are: n 

xl = 0.255, fll = 0"006984, 
a2 = 0-581, f12 ---- 0"10348, 
a3 = 0"164, fla = 2"1896, 

from the Rozental  three- term approximation.  
fA and fT, obtained respectively from the electronic 

wave functions and from the TF  method, are closely 
related to each other, namely,  

C, 0"f r  _ f a ,  (7) 

where p is flnZ ~13 and C~'s are operational factors. In  
other words, all f-factors ma y  be reasonably expressed 
by 

H 
f (8 )  = Z .  (s ~ + E )  ~ , (8) 

where H and E are independent  of s. 
The best f-factor  calculated from the Har t ree  and 

Har t r ee -Fock  equations is now becoming available for 
m a n y  atoms (Berghuis et al., 1955), but  only numeri- 
cally. However, it is possible to derive analyt ical  ex- 
pressions for any  of these f-factors by means of Slater 's  
analyt ical  functions (Slater, 1932; LSwdin, 1953). 
Since Slater 's  function is a linear combination of the 

* I f  @(r) = k r  n exp ( - - c r )  a n d  r ~= 0, t h e n  f r o m  (1) we h a v e  
the  Lap l ace  equa t ion ,  

a 2 f ] ~ ' ~  - a2 f /~c  2 = O ,  (3) 

where  p ------ 2yes in sin 27tsr. E q u a t i o n s  (4) a n d  (5) are  so lu t ions  
of (3). 

hydrogen-like wave functions as in (2), the  f - factors  
can similarly be expressed by  (4), (5) and (8). 

Ins tead of equation (8), it  is possible to find other  
functions which are good approximat ions  to the best  
f-factor.  If McWeeny's  Gaussian approximat ion to the  
electronic wave function (1953) is employed, the  
f-factor  is expressed by a linear combination of the  
parabolic cylinder function (Whit taker  & Watson,  
1935, p. 347). The function, ( tanh x)/x m a y  be used 
similarly. For  example, the Har t ree  f -value  of Na+ is 
approximated  by  10 (tanh 2.5s)/(2.Ss) with fair ac- 
curacy. Although these curve-fi t t ing methods have 
less generality,  they  often avoid tedious mathemat ica l  
t rea tment .  

3. T h e  F o u r i e r - H a n k e l - G a u s s  t r a n s f o r m a t i o n  of  
the  a t o m i c  s c a t t e r i n g  fac tor  

(1) Introduction 
I t  is well known tha t  the isotropic thermal  vibra- 

tions of an a tom in a crystal  reduce the f - factor  for 
Bragg reflexions by the Debye-Wal ler  t empera ture  
factor exp (-Bs2/4),  where B = 8~2& " and u 2 is the  
mean-square displacement of an a tom from its average 
position. B is always positive and finite even at  the  
absolute zero temperature ,  a l though the  equations for 
B = 0 will be given as a mathemat ica l  l imit in spite 
of the uncer ta in ty  principle. 

The radial  electron density,  @3(r), and its two- and 
one-dimensional projections, @2(r) and @l(r), respec- 
t ively, are then expressed as the F o u r i e r - i a n k e l -  
Gauss t ransformations of the f - factor :  

@a(r) = l:°47esef(s)exp (-¼Bs2).  sin 2~rrs ds 
2 ~ r ~  ' (9) 

@e(r) = I~27csf(s)exp (-¼Bs2).Jo(2grs)ds,  (10) 

where @a(r) ~ @(r) when B = 0 and Jo(x) is the  zeroth- 
order Bessel function of the first kind. Since f(s) is 
spherically symmetric ,  @3(r), @2(r) and @l(r)" have 
respectively spherical, circular and linear symmet ry  
with respect to the origin. 

The Hankel  t ransformat ion is self-reciprocal (Erd4- 
lyi et al., 1954, vol. 2, p. 3). We have then from 
equation (10), assuming s o -+ co, 

f(s) exp ( -¼Bs  2) = 2~r@2(r)J,(2~sr)dr. (12) 
0 

Therefore, we m a y  be able to calculate the f - factor  
from the electron densi ty in the two-dimensional pro- 
jection. This t ransformat ion is valid in all cases, 
except in ease of the TF  model of the electron densi ty 
with B = 0. 
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The curvature of the density function at the origin, 

0',~' (0) = (~20,~(r)/~r2),= o , (13) 

supphes important  information on the accuracy of the 
electron-density maps (Cruickshank, 1949). Moreover, 
0~,'(0) has high sensitivity to the thermal factor. If 
B # 0,* then 

= ---1-g~xtal~saf(s) ex p ( -¼Bsg)d8 ,  (15) 0'3' (0) 

~o2 t ) = - 4 ~ s  83f(8) exp ( -1Bs~)d8  (16) 

0;'(0) --- - 8 ~  ~ s2f(s) exp ( -¼Bs~)ds .  (17) 
o 

In  these equations, So should be infinite mathemat-  
ically, but  is finite in practice. We shall call the former 
a complete transformation and the latter an incomplete 
transformation. A number of differential equations may 
be utilized to solve these integrations. Among them, 
the following forms are of great interest. 

Defining 0a(r) = ~a(b, q), where 4b = B and q -= 
2~o" in sin 2~zsr, if r # 0, we have 

~e~(b, q)/~q~ = ~e~(b, q)/~b . (18) 

This equation is exactly tha t  for linear heat conduction 
or a diffusion process in a non/steady state (Margenau 
& Murphy, 1943, p. 232). The three-dimensional cases 
are closely related to the one-dimensional ones as 
follows: 

cO~ox(r) 
~r --2~rrea(r); 01'(0) = -2~0z(0);  

@','(o) 
3 ~B 0~'(0). (19) 

In general, 0=(0) and 0~'(0) are related by 

16~r~e~(0)/~B = n0n(0) .  (20) 

Equations (18)-(20) are independent of the form of 
the f-factor and are valid for all possible values of a o. 

Although both complete and incomplete transforma- 
tions are given for the TF  atoms, the following method 
to estimate the termination-effect of the X-ray Fourier 
series on Qn(0) and 0n'(0) may  sometimes be useful. 
For  s > s o, where s o > 1 in most of the experimental 
conditions, we may use the Gaussian approximation, 

f(8) exp ( - J iBs  ~) = G exp ( -g89) .  (21) 

G and g may be evaluated by a curve-fitting method. 

* I n  equat ions  (15)-(17), we employ  

lira :l(s,B, r)d~ = so lira "-+o ~r2 ".'o r-->o ~'~r2 =l (s' B' r)ds " (14) 

By Lebesque's convergence theorem (Saks, 1937, p. 114) 
and its extension, (14) is generally true if B =4= 0, and in a 
few cases this is valid even if B = 0. Use of (14) avoids dif- 
ficult computations. 

This approximation is better for larger B values and 
for smaller atomic numbers. Using the relation, 

I °°82~ exp ( -gs2)ds  ( - 1 :  = ~ exp (-9,82)d8 (22) 
~o ~9, J~o ' 

we obtain the following results for the three-dimen- 
sional cases : 

A03(0 ) = 4~s2f(s) exp ( -¼Bs2)ds  
S0 

3 (V9,.8o) 

exp ( -gs~)} ,  (24) + 2so(2gs~+ 3) 

where 

erfc (x) = exp (- t2)dt  = I - e f t  (x), (25) 
X 

are the error functions. Under the same approxima- 
tion as in (21), Higgs (1953) has obtained the equations 
corresponding to (23) and (24). However, his equations 
contain an incomplete gamma function and the present 
results may be more convenient for computation. 

The two-dimensional cases are 

foe A02(0 ) = 2~sf(s)  exp ( - ~ B s 2 ) d s  = :r---~Gexp (-9,s~), 
*~so 9' (26) 

4~aG 
/10' 2' (0) g ~  (gs~+ 1) exp ( -gs~)  . (27) 

The one-dimensional ones, if necessary, can be readily 
obtained from (19), (22) and (23). 

(2) Hydrogen atom 
The results given in this section are apphcable to 

the ls electron of any atom or to the density distribu- 
tion with n = 0 in equation (2). Expressions for 03(r) 
and 02(0) are omitted, since they are given by 
McDonald (1956). 

Using the dimensionless quantities, 7 = B/(4re2ao) 
and R = r/a o, where a 0 is the Bohr radius, we have 

0~(r) = 2 exp (7) {R~l(2R, 7)_:~,~0(2R, 7)} (28) 
~za~ 

01(r) -exp4a 0 ( 7 ) { ( l + 2 R - 2 7 ) e x p ( - 2 R ) . e f f c ( V 7 - ~ )  

[ \ '4 R 
+ ( 1 - 2 R - 2 7 ) e x p  (2R).erfc ~ l / y + ~ )  

where u0(2R, y) and ~1(2R, 7) are the incomplete 

20* 
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modified Hankel function of order zero and one, 
respectively (cf. Appendix). Noting that y < 1 when 
B < 11.1 /~2, we have the following results from 
equation (28): 

~ . ( r ) -  ~a~ 2 R K I ( 2 R ) - 2 ~ ' K ° ( 2 R ) - ~ E i -  

n=l n! R~.:~, t n+l dt , (30) 

where K0(2R ) and KI(2R ) are the modified Hankel 
functions (Watson, 1952, p. 698). The integral in (30) 
can be evaluated by using the exponential integral, 

f ~ exp ( - t )  d t ,  - E i ( - x )  = (31) 
z t 

and the recursion formula, 

~c~ exp (--t) 1 (exp (--x) ~c~ exp_ (_--t) 
~: tn + ~ dt = -  dt (32) 

J n \ x n Jz tn 

Only a few terms are required here, because (32) 
converges rapidly with n. 

If R > 1 (r > 0.5291 A), by using the asymptotic 
expansion of the error function, pa(r) and ~l(r) may 
be approximated by 

0~(r) ~ ~a---~ 1 -  exp ( ~ , - 2 R ) ,  (33) 

1 
~(r)  ~ ~ (1 +2R-2~,) exp ( ) ' - 2 R ) .  (34) 

Similar approximation formulae may be obtained 
readily for any of the equations given in the present 
paper. 

If r = 0 and B # O, we have (cf. Appendix) 

~a(0' = ~a---~ (1 +2),) exp (),).effc (!/),)-2 , (35) 

~ 1 ( 0 ,  = laao{(1-2), , exp (~).erfc (1/),)+2 ¢ (~)} .  (36) 

The curvatures for r = 0 and B # 0 are 

e3"(0) - 3~a~4 {-(3+2),) exp (),).erfc (1/),)+2 

× ¢ ( ~ ) ( ~ + 1 ) } ,  (37) 

e;'(o) =~---2a,{(l+e) exp (7).Ei(-e)+i}. (38) 
0 

~'x'(0) can be obtained from (19) and (35). 

(3) Many-electron atom 
The three- and two-dimensional cases are given in 

this section. For p ( r )=  kr~exp ( - c r ) ,  using the 
dimensionless parameters, ~/ = BcZ/(16zt z) and R = 
cr/2, we have 

~a(r) = ( n + l ) !  2n/Z-lk~7(n+l)/Z1/z~. c n R exp ( ~ ) -  

× [exp {~ (1-R)Z}.  D_(,+2){l/(2z/, ( I - R ) }  

--exp{~ ( I+R)  2} "D_(n+2){I/(2v/)(I+R)}], (39) 

where D_~(x) is the parabolic cylinder function. 
For the two-dimensional case, we have the following 

general solution for our integral: 

f 
~ s exp ( -¼B8 2) B n 
o (82+c2/4ze2) n+x J°(2ztrs) ds = 2Z~n ! 

×exp ' ~ '~ ' :m=o{( -1 )m( : ) (R)n -mz~-m(2R '~ ) }  " (40) 

The cases for r = 0 ,  B 4 0  and 0 < n < 3  are as 
follows: 

(i) e(r) = kr exp (-cr) :  

ea(0) = 2k{ -v/(2~ + 3 ) - c  

× exp (~).erfc (1/~)+2 ¢ ( ~ ) ( ~ +  1)}, (41) 

2k 
ee(0) = f f { - ~ ( 2 ~ + l )  exp ( ~ ) . E i ( - ~ / ) - 2 ~ + l } .  (42) 

(ii) ~(r) = kr e exp (-cr) :  

2kz/{ (4~79.+ 12~/+3) q~(o) = - g - c -  

4k 
eg(0) = ~ {~/2(2~+3) exp (r/).Ei(-r/)+er/~+~/+ 1}. 

(44) 
The expressions for ~'(0) and ~'2'(0) for 0 < n < 3 

are: 

(i) @(r) = kr exp (-cr) :  

e3' (0) = -- ~ kC { (2~ 2-4- 7Z/+ 3) 

×exp (~7,.erfc (1/~,-2 ~ ( ~ ) ( r / + 3 + ~ ) } ,  (45, 

(2' (0)=-k{(2~+5~+ 1)exp (V).Ei(-z/)+2~/+3 }. (4fi) 
(ii) e(r) = kr 2 exp (-cr) :  

e; ' (o)  = e x p  i ¢ , )  

2k {(2~2+9~+6 ) e'~' (o) =-Z 
xexp (r/).Ei(-z/)+2~/~+7~2+l}. (48) 
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(4) The Thomas-Fermi atom 
(a) The complete transformation.--Denoting 4P n = 

Bfl .Z z/a and Qn = 7~Vfl~.z~/3r, where dimensionally 
[P.] = [Qn] = 0, we have 

~ Z ~  o,. ¢i~./~- 
53(r) = ~ ~n ~ exp (Pn) 

× {exp ( - 2 Q . ) .  erfc ( l / P . -  ~-~.) 

- e x p  (2On).erfc (~Pn+ vQ---~.)} , (49) 

52(r) = 2~Z 5Is ~, ~x.fl~ exp (P.) .  z 0 (2Q., Pn):, (50) 
n 

y ~ Z 4 ] 3  " 

5, (r) = ~ ~ ~.  Vfl- exp (P.) 
n 

x exp (-2Q~).erfe VPn- 

+exp (2Q~). erfc (] /P~+ O~p-~}, (51) 

where the limit on n is 3, corresponding to the Rozental 
three-term approximation. Note tha t  Qn/~Pn is equal 
to 2xer/~B and is independent of n. 

When r = 0 but B 4= 0, the results are 

53(0) = 2 g Z  2 ~Y o~nfl 3/2 {V(z/P.)-xe 
n 

× exp (Pn).erfc (VP~)}, (52) 

5~(0) = xeZ ~]s.~ ~Xnfln exp (P.) .  { -Ei ( -Pn)}  , (53) 

5~(0) = gZa/3.~, ~xn~fl~ exp (P.) .erfe  ((Pn) . (54) 

The following equations for r 4= 0 and B = 0 will 
give the s tandard peak shape of a TF atom at rest: 

53(r) = =2Z2~---Q-~n exp ( - 2 Q n ) ,  (55) 

59(r) = 2~Z5/3 Z O¢nflnK o(2Qn) , (56) 
n 

51(r) = ~Z4/3.a~ o~n(fln exp (-2Qn) . (57) 
n 

When both r = 0 and B = 0, the peak heights in 
the three- and two-dimensional cases become infinite, 
but 51(0) = 1-417Z4/3. However, it can be proved tha t  

4~r~53(r)dr = 2~r52(r)dr = Z ,  (58) 
0 0 

and the physical interpretation is still valid as in 
other eases. 

The curvatures for r = 0 and B 4= 0 are as follows: 

×[1-2Pn{1-V(~rPn) exp (Pn).erfe (~/Pn)}], (59) 
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5'~'(o) = - 2 ~ 3 z 7 / 3  2 o,.~ 
n 

(b) The incomplete trar~formation.--As may be ex- 
pected, mathematical  complexity increases in the in- 
complete transformation. Various types of series ex- 
pansion can be utilized for the general eases. However, 
these eases require unnecessarily lengthy explanation. 
Consequently, only those eases which are of immediate 
interest to us are discussed here. 

In  the ease, r = 0 and B # 0, by introducing again 
the dimensionless variables, S o = sol~B~2 and q• = 
U~n,Zl/3/8o, where Pn ~ 2 = Soq n, we have 

53(0) = 27~Z2"~ ~x'fl:/2 [ ~/(-~) erf 

- 2  exp (Pn){ arctan 1-qn- 2qnW(S°'qn)}l , (61) 

5~.(0) = ~ Z S / 3 Z  o~.fl,, 
n 

xexp (P . ) [Ei{ - (S~+P.)} -Ei ( -pn)] ,  (62) 

5 1 0 )  = 2 z  4/~ 2 :  o,.V¢~. 
n 

× exp (Pn),~ arctan qn£ __2qn W (S o, qn)}, (63) 

where 

S: o s' W(So, qn) = exp (_q~y2) 0exp (_x2)dxdy. (64) 

This double integral has been investigated extensively 
by Rosser (1948). 

When both r = 0 and B = 0, we have 

53(0)= 4~rZ2"a~'c%flan/9( I n  a r c t a n l )  ' (65) 

52(0) = xeZS/aZ'°~nflnln(l+~)n ' (66) 

• 51(0) = 2z4/az, o~nVfln aretan 1 , (67) 
n qn 

where equations (65)-(67) are functions of So Z-1/a alone. 
When r = 0 but  B # 0, the curvatures are 

n aLn  

1 
× err ( S o ) - ~  exp ( - S o  2) +2Pn 

×exp (P . ){a re tan  lq. --2qn W (S 0, q~)}] , (68) 

c%fl~ [ 1 - e x p  ( -Sg) -Pn  exp (P~) 

× { E i ( - S ~ - P . ) - E i ( - P . ) } ] .  (69) 
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The curvatures  for both r = 0 and  B = 0 are func- 
t ions of So Z-11a alone. 

/1  3 3 ~ )  e;' (O) = --l~A=3ZS/3 ~ ~ . f l ~ / 2 / ~ - - - + : - ~ a r c t a n  , 
n \q~ qn q ;  

(70) 

e T ( o )  ln(  )} = - +1 . (71) 
n 

4. A p p l i c a t i o n  

Since extensive tables such as those publ ished by the 
Nat ional  Bureau of Standards  or highly convergent 
series are available for all of the t ranscendenta l  func- 
tions used in this paper, and since all equations intro- 
duced are closely related to each other, the numerical  
evaluat ions can be carried out without  much difficulty. 

The one-dimensional case has not  been used very 
often in structure analyses. However, it  is closely 
related to the three-dimensional  case as in (19), and 
fur thermore it  is useful in interpret ing other higher- 
dimensional  cases in our transformations,  as discussed 
below. 

(1) Hydrogen atom 
As discussed later in detail, the peak densi ty of 

l ighter atoms is most ly  due to the Is electron when 
B is small. Therefore, the results for the hydrogen 
atom will have considerable generality.  The peak den- 
sity, Q,(0), and the peak curvature,  ~','(0), of hydrogen 
a tom are shown in Fig. 1, as a funct ion of B. I t  is 
readi ly  seen tha t  the dependency of the peak curvature 
on B is much greater t han  tha t  of the peak density. 

This is generally true for all atoms over a wide range 
of B. 

For  both 0n(0) and ~ ' (0) ,  the three-dimensional  
case (n = 3) in i t ia l ly  gives exponent ia l ly  decreasing 
curves, and the one-dimensional case (n = 1) is rela- 
t ively insensit ive to B, while the two-dimensional  case 
(n = 2) lies more or less between these two cases. 
One notes tha t  there are critical values of B, beyond 
which the n = 3 case will no longer have larger values 
of Qn(0) or ~'n'(0) than  those in other cases. This fact  
m a y  be very  instruct ive in locating the hydrogen 
position, since the accuracy of the atomic co-ordinates 
in the electron-density maps  increases as the peak 
curvature increases (Cruickshank, 1949). Fur thermore,  
the Fourier  ripple-effect of a heavier  atom near  the 
hydrogen would be decreased relat ively a s  the hy- 
drogen peak-densi ty  increases. Accordingly, if the 
B-value is greater than  all of these critical values 

(B > 5.3 /~2, i.e. (~)½ > 0.26 J[), use of the three- 
dimensional  synthesis will no longer increase the ac- 
curacy of the hydrogen co-ordinates in the X-r~v 
Fourier  methods.  However, the three-dimensional  syn- 
thesis has greater advantage  in resolving the peaks. 
Although all a toms have critical B values, the above 
discussion becomes less impor tan t  in heavier  atoms. 
This is because their  critical B values for the peak 
densities are usual ly  considerably large (Fig. 5) and 
those for the peak curvatures are always much greater 
t han  those for the peak densities. 

(2) Many-electron atom 
All numerical  results given in Figs. 2-4 are based 

on the Duncanson-Coulson wave functions (1944). 
From these figures, one can readi ly find the peak 

4' ,  ' 
2- t ,, I-2o 

1~,'~ \~ 
1 ~  ~. , ~  
I \ ' ~  ' r 
j \ , /  ,,, I- 

° t  ', (o.A-("")) 

1 ~  -10 

(e.k") 

. . . .  = : = :  = = 2) 
- '  ,r..(n = 3 ) 

L "  1 J I ' ' 1  -' ~ I ' I a i ' i 1 ~ I ~ I L 0 
2 4 6 8 0 B(A 2) 

Fig. 1. Hydrogen atom: the peak density, 0n(0) in solid lines, and the peak curvature, On' (0) in broken lines, as a function of B. 
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Fig. 2. The peak densities of atoms in their ground states from lithium to fluorine in the three- and two-dlmensional cases 
of the complete transformations, where 0 ~ B < 2.8 A ~. The peak density of the fluorine ion in the two-dimensional case is 
also shown by the broken line. The other possible valence or ionic states are not  shown here, because they  are not  clearly 
distinguishable from the curves shown. All values are measured in the atomic unit. 
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Fig. 3. The peak densities of atoms l i thium to fluorine in the three-dimensional case of the complete transformations, where 
3/~9 ~ B < 10/~2. The results obtained from the Duncanson-Coulson wave functions are shown by solid lines for the 
ground states, by broken lines for the ionic states, and by filled circles for s p  ~ carbon atom. The values for the TF carbon 
and l i thium atoms are shown by open circles and squares, respectively. 
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20 I 
ls~,~-.(F. - 

1"-.">-(1--. / 
¢~(o) -I'-.. (o-.~.~-. j. 
(e'h-2) L ' ~ ~ ~  " -  

~ o- I . .~~. . .  ~ " - ~ . ~  ~ - -~ -  _ ~ . . . . . .  

r ~ 

o ! 
3 4 5 6 7 8 9 

B(A 2) 
Fig. 4. The two-dimensional  case using the  same no ta t ion  as in Fig. 3. 

T a b l e  1. Comparison between observed and calculated values of  Qn(O) 
and Q'n'(O), where n = 2 or 3. 

Values of ~n(0) in e.A--n; values of £~'(0) in e.A--(n+ 2) 

A t o m  (n) C1(2) C1(2) C(3) C(3) N(3) 0(3)  F(3) Si(3) 
Crystal  B2C14* B4C14t 1,8-Diphenyl- Oxamid§ Oxamid§ Oxamid§ SiF4// SiF4// 

1,3,5,7- 
octatetraene~. 

B (A 9) 1.6 3.5 1.93 1.698 2.055 2.055 4.1 4.1 
s o (A -x) 1-321 1.321 1.297 2.16 2.16 2.16 1.268 1.268 
<qn(0)obs.)av. 34 24 10.4 17.5 17.9 20.0 12 23 
<~ '  (0)obs. >av. 421 242 105 321 303 316 96 169 

Complete  t r ans format ion  
(i) - -  - -  23.6 27.2 25.4 29.2 16.8 - -  

~On (0)calc. (ii) 48.4 28.7 22.4 25.6 25.6 30.5 16.7 29.0 
(i) - -  - -  725 939 728 801 216 - -  

~o~' (O)eale. (ii) 1535 451 637 819 692 828 239 423 

Incomple te  t r ans format ion  
(a) 33-8 25.4 11.3 22.8 22.8 26.5 13.1 24.5 

On(0)cale. (b) 33-2 25"2 11"9 22'0 23"2 27"6 12"9 22-5 
(c) - -  - -  11.4 22.9 22.5 26.0 - -  - -  

" ' 0"  ! (a) 437 270 117 543 489 544 107 182 
~on ( )calc. (b) 415 264 123 491 477 562 113 198 

I ( c )  - -  - -  120 552 478 518 - -  - -  

~ n  (0 )obs .  l 'O 0"94 0"92 0"77 0"79 0"75 0"92 0"94 ~on(0)c~e. ( - )  

~'(0)obs. 0.96 0'90 0'90 0.59 0.62 0.58 0"90 0.93 
t t / 0 ~  Qnt )tale. (a) 

(i) F r o m  the  electronic wave  funct ions  for the  ground  state .  
(ii) T h o m a s - F e r m i - R o z e n t a l  me thod .  
(a) Graphical  in tegra t ion  using ](s) given by  Berghuis  et al. (1955) or given in the  International Tables (1935). 
(b) T h o m a s - F e r m i - R o z e n t a l  incomplete  t ransformat ion .  
(0) The results  using the  Gaussian approx imat ion  of equat ions  (23) and  (24), in which  G ---- 1-754 e., g = 0.113 A2-[-¼B 

for carbon;  G = 1.76 e., g ---- 0.0811 A~-t-¼B for n i t rogen;  G = 1.79 e., g ---- 0.0658 /k~-F ~B for oxygen.  

* Atoji ,  Lipseomb & Whea t l ey  (1955). t Atoj i  & Lipscomb (1953). 
:~ D r e n t h  & Wiebenga  (1955). § Ayers t  & Duke  (1954}. 
/ / A t o j i  & Lipscomb (1954). 
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heights of the atoms in the first row of the periodic 
table, except neon, as a function of B. Since these 
values are obtained from the complete transforma- 
tions, they will give the maximum possible values of 
the peak heights. The peak curvatures can be obtained 
from these figures and equation (20), or directly from 
equations (37), (38) and (45)-(48). The series-termina- 
tion effect may be evaluated by using the Gaussian 
approximation as in equations (21)-(27), br by the 
graphical integration of the original expression using 
the best scattering factor (cf. Table 1). 

I t  is found in all atoms that the 2s-electron densities 
at the origin are less sensitive to B than those of the 
ls electron, although both decrease similarly with in- 
creasing B. The 2p-electron density at the origin in the 
three-dimensional case is zero when the atom is at 
rest. As the mean amplitude of vibrations of the atom 
increases, the number of the 2p electrons found at 
the origin first increases rather sharply and then 
decreases very gradually. On the other hand, the two- 
dimensional case is finite at the origin when the atom 
is at rest, and is very insensitive to changes in the 
thermal factor. 

Although the contributions of the 2s and 2p elec- 
trons to the peak densities of the atoms are small for 
small values of B, these become relatively important 
as B increases, because of their different dependencies 

k ! 
Mo Ka ', 

1 0 0 -  -, ~ 

t°ll 

~o.(o) ,, 
(e.A-") ', 

50-" 
[So=1;2972 Cu Ka KI/ 

e.(o) 
(e.K n) 

on the temperature factor. In addition, these contribu- 
tions are rather greater in the two-dimensional case 
than in three dimensions. For example, in the ground 
state of the fluorine atom, the 2p contributions to 
Qs(0)(Q~.(0)) are 24% (35%) at B = 3 A 2 and 40% 
(45%) at B = 8 ~2. 

In the extended Figs. 3 and 4, the peak densities 
of the iso-electronic atoms 0= and F -  are shown. The 
difference between these two atoms is statistically 
significant even with the present accuracy of X-ray 
methods, because the standard deviation of the elec- 
tron density in the Fourier maps is less than 0.4 e.A -n 
in most of the reported structures (cf. Cruickshank, 
1949). I t  may also be noted that  the difference be- 
tween the peak densities of O= and F -  is almost in- 
variant with respect to the temperature factor. 

The differences between the ground and valence 
states in any atom are very small in the peak values, 
as seen from the case of the carbon atom in Figs. 3 
and 4. Consequently, for distinguishing the different 
valence states, the non-spherical nature or the direc- 
tional property of the bonding electron distribution 
may be more useful than the peak value. The density 
distribution of the electrons having non-spherical 
symmetry, such as the 2p electrons, may be evaluated 
from (39) and (40) for the special spherical angles 
(cf. Higgs, 1953). 

20 

--~ --__ n=l 

7 8 

( So = 0.8730 A-l:) "~~~n ~ ( ~ "  " " ,  
Cr. Ka " ' - .  

= 0"5351 A - t  
So K Ka  

I " 1 I 

9 10 11 12 

BC A2) 

0 5 10 

B(A ~) 
Fig. 5. The peak density of the TF chlorine atom in the two-dimensional complete and incomplete transformations as a function 

of B. The three- and one-dimensional complete transformations are also shown by broken lines. The critical B values may 
be seen from the inserted figure at the upper right corner. 
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e2(0)( h-2)z i (h-2) 

\ \ \  

,1 ~ U ( Z=92) 
sG = 2"8141 A - I ~ B r  (z=3s) 

(Mo K(z) J~Cl (Z=17) 
I 

0 ~ 1 ' 1 ' 1 '  I '  I ' 1 ' 1 ' 1 '  I '  I . . . .  
0 5 10 

S(h 2) 

u (z=92) 
(Z=74) 
(z=53) 

~Br (Z =35) 
- -Cl  (Z =17) 

10 

Fig. 6. The  peak  densities per  nuclear  charge of the  T F  a toms  for various B values in the  two-dimensional  incomplete  trans- 
format ions under  two exper imenta l  conditions.  

We now know the dependency of the density distri- 
bution on B of each electronic orbital. If very precise 
X-ray  data  at  different temperatures were available, 
the quanti tat ive analysis of the electron distributions 
in Fourier maps of various dimensions would give 
useful information to molecular theories and to the 
re-determination of the screening constants in wave 
functions. 

(3) The Thomas-Fermi atom 
All numerical results given for the TF  atoms are 

based on the Rozental  three-term approximation. 
As is well known, the f-factor of the TF  atom is a 

function of sZ½ alone (el. equation (6)). Correspond- 
ingly, Q,(r)/Z "/a+l of the T F  atom is a function of two variables, ZiI/B and Zbr. Therefore, the resu]ts 
for the complete transformations given in Figs. 5-8 
can be easily converted to any other TF  atom. On the 
other hand, for the incomplete transformation, two 
more variables, ~B.s  o and Z-½So, are required. Ac- 
cordingly, the conversion in the incomplete transfor- 
mation always accompanies the change of both ex- 
perimental parameters, B and s 0. Therefore, except in 
very special cases, the simple generality such as in the 
conversion of the f-factors may  not be found in the 
incomplete transformation. 

When smaller values of 80 are taken for the limit 
of the observation, the decreasing sensitivity to the 
B-value is reflected in the peak value. This is generally 
true for all atoms, and for both the wave functions and 
the TF  methods. An example is shown in Fig. 5, from 
which one may see tha t  the peak values are almost 
invariant  with respect to B when a long-wavelength 
radiation is used. 

In  any case, the difference between ~n(0)'s or 
e~'(0)'s decrease as B increases. For instance, if B > 2.5 
A ~, the peak values for Mo K0~ (s o = 2.8141 lk -1) are 
well appror imated by ones for s o = oo in any TF  atom 
in the two-dimensional case (Fig. 5). 

The values, ~2(0)/(Q2(0))B=o for a wide range of 
B, are almost the same for the TF  atoms with Z >__ 17 
for any s o value. This may  be seen from Fig. 6, from 
which one also can obtain the peak values of the TF  
atoms in the two-dimensional projection for Mo K~ 
and Cu K~. 

I t  is also found that  there are critical s o values. 
If s o is less than these critical values, the rela- 
tion, ~a(0) > ~(0)  > ~1(0) changes reciprocally to 
Oa(0) < eg(0) < ~l(0). A similar relation is shown for 
the peak curvature. In  other words, the peak values 
in various dimensions for s o < so(critical ) show similar 
behavior to tha t '  for B > B(critical) (Figs. 1 and 7). 
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Fig. 7. The ser ies- terminat ion effect  on bo th  peak dens i ty  
and  the  peak  cu rva tu re  of the  T F  chlorine a t o m  wi th  
B = 0; qn(O) in solid lines and  ~ ' ( 0 )  in broken lines. The 
ordinate  is in logar i thmic scale. 
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Fig.  8. The effect  of the  zero-point  v ibra t ions  on the  electron 
d is t r ibu t ion  of the  T F  copper a t o m  in the  complete  t rans-  
format ions .  The  physica l  l imi t ing  case (B-----0-14 A 9") is 
shown by solid lines, and the mathematical limiting case 
(B ---- 0) by broken lines. 

The existence of a critical s o should be realized in the 
preliminary stages of X-ray Fourier analysis, where 
one often uses the data within a small sin 0/)l range. 

The TF statistical approximation is less reliable for 
the lighter atoms, as seen in the case of the lithium 
atom in Figs. 3 and 4. However, in general, the TF 
model for these lighter atoms becomes more satis- 
factory as B increases. This may be because the elec- 
tronic orbitals of the atom are smoothed out by the 
thermal vibrations, and the statistical treatment of 
charge distribution becomes suitable even for these 
lighter atoms. In Figs. 3 and 4, one may notice that  
even the carbon atom, which has only six electrons, 
may be treated by the TF method, provided that  the 
thermal motion of the atom is appreciably large. In 
the case of the fluorine atom, the difference between 
the results obtained by the electronic wave functions 
and by the TF method is negligible for B > 3 / ~ .  

(4) Comparison with experiment 
The peak density and the peak curvature calculated 

from the wave functions and the TF method are com- 
pared with the observed data in the two- and three- 
dimensional cases in Table 1. As indicated by the ratio 
between the observed and calculated v&lues, the ob- 
served peak values are always smaller than the cal- 
culated ones. This is because the very weak reflections 

are not used in the Fourier synthesis of the electron- 
density maps. Moreover, these weak reflections are 
usually more frequently observed at larger s-values. 
Therefore, the effect of these rejected reflections is 
greater in the peak curvature than in the peak density 
as realized from the integrands in equations (9)-(17). 
This can be seen particularly from the results for ox- 
amid crystals. The unreliability of the intensity mea- 
surement of the X-ray reflection at small sin 0]2 does 
not affect greatly the peak values. The graphical inte- 
grations were done with a polar planimeter, using 
equations (9), (10), (22) and (23) along with the best 
f(s) available. 

(5) Other possible applications 
B consists of two parts, B 0 and BT, where BT 

depends on the temperature T and B o is independent 
of the temperature, having its origin in the zero-point 
energy of the crystal lattice. Therefore lira B = B o 
and T-~ o 

B° 2 mAkO and B~, m~kO 0 , (72) 

where ma is the atomic mass, h and k are respectively 
Planck's and Boltzmann's constant, O is the charac- 
teristic temperature of the crystal and 0 (x) is tabulated 
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as a function of x (James, 1950, p. 219). The effect of 
B 0 on the f-factor is by no means negligible at large 
values of sin 0/2. Correspondingly, B o may consider- 
ably modify the peak-shape at small values of r. This 
is most strikingly demonstrated by the TF copper 
atom at 0 ° K. in Fig. 8, where O = 320 ° K. and 
B 0 = 0.14 /~  (James, 1950, p. 221). 

If the electron distributions of the atoms in a crystal 
at various temperatures are determined accurately 
with Fourier maps, such as in the case of o~-trans- 
cinnamic acid (Ladell, McDonald & Schmidt, 1956), 
the characteristic temperature may be determined, 
at least approximately, from equation (72) and others 
given in this paper. 

In the difference synthesis for the refinement of the 
temperature factors of atoms, if atomic co-ordinates 
are correct, the following relation obtained from 
equation (20) may be useful: 

16~ ~" ~ 
A B  - - -  ,, (73) 

n q. (0) ' 

where ~ = q~o(0)-~)~c(0), and qno(0) and qnc(0) are 
the peak heights in the observed and calculated 
Fourier maps, respectively. ~)'n'(0) in equation (73) may 

t t  t t  

be taken as the average of ~o(0) and ~n~(O) or may  be 
I I l o * ~  approximated by ~ot ). 

If both atomic co-ordinates and temperature factor 
deviate slightly from the true values by Ax~ and AB,  
respectively, we may utilize the value of ~Sn/~x~ 
obtained from the difference Fourier maps as follows 
(cf. Lipson & Cochran, 1953, p. 300): 

A x ~ . A B  n ~ (74) 
1692(~n ~x n • 

Equations (73) and (74) will be useful for refinement 
of the atomic co-ordinates and the temperature factor 
at the final stage of the structure analysis. 

A P P E N D I X  

The incomplete modified Hankel functions are defined 
by 

1 t n - lexp  - t -  d t ,  (A-l)  ~,~(2x, y) = ~ y 

and 
lim ~ (2x, y) = Kn (2x) . (A-2) 
y---~ 0 

The series expansion of u0(2x, y) and xl(2x , y) are as 
follows. If x + 0, 

2u 0 (2x, y) 
( ~ )  ® (--1)n S°~ exp( - - t )  

= 2K o (2x) +Ei  - - ~' ---W-C- x2~ tn+l dt , 
n=t  n .  z~,'y 

(A-a) 
2xzl(2x, y) 

1 ~ ~'~ = 2 x K i ( 2 x ) -  Z ( -- 1)~ x2n+ 2 ) exp ( - t )  
n=0 n! z2/u in+., " dt .  (A-4) 

The integration, 

I ~ exp ( - b s  2) 
I ~ =  ds 

o (s~+PF 

1 ~In_ 1 

( n - l )  ~p 
, ( A - 5 )  

appears frequently in our transformation. I t  may be 
made to depend on 11, where 

11 _ ~ exp (bp) erfc (V(bp)). (A-6) 
2 VP 

The solution for 11 may be obtained as follows. Let 
11 be a function of b; then we have 

After multipling by exp ( - b p )  on both sides of (A-7), 
we integrate as follows: 

V ~ f ~ exp ( - b p )  
- 2 b V b d b .  ( A - S )  

Equation (A-6) is then easily obtained from (A-8). 
The function W(So, q,,), is also introduced by this 
procedure. 

The author is grateful to Prof. W. N. Lipscomb for 
his kind interest and to the Office of Ordnance Re- 
search for the financial support. 
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Atomic scattering factors can be expressed analytical ly by an expansion of Gaussian functions. 
A two-term expansion is sufficiently accurate to cover the  Cu K s  range of scattering angles oc- 
curring in crystallographic calculations. For  the  Mo K s  range, one extra constant  is to be added.  

The constants  of the two- term expansion are evaluated for all the  elements. The function fits 
the  tabula ted  atomic scattering factors to bet ter  than  1% of f(0) in most  cases. 

Introduction 

The increasing availability of high-speed computers 
for crystallographic work creates need for analytical 
expression of atomic scattering factors. We have con- 
sidered several possible functions for this purpose, and 
have decided upon a Gaussian expansion 

f(x) = .~, Aj exp ( - a j x  2) , (1) 
i 

where x = sin 0. 
This expansion has the advantage of very rapid 

convergence. If only two terms of the above series 
are taken, we obtain 

f(x) = A exp ( -ax~)+B exp ( -bx  ~) . (2) 

This expression contains only four constants A, B, a, b, 
which depend on the range to be fitted; two of these 
are connected by the relation 

A + B =  N ,  (3) 

where N is the number of electrons in the atom or ion. 
Thus (2) is essentially a three-constant formula. For 
atoms, N = Z, the atomic number; for ions, N differs 
from Z. 

The two-term expansion proved to be sufficiently 
accurate for all the elements over the whole Cu K s  
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range of angles O, the error rarely exceeding 1% of 
f(0). The additional practical advantage is that  a sub- 
program for a Gaussian function is usually already 
available in the computing routine for the calculation 
of the temperature factor. A further advantage is that  
the function has a simple transform, so that  computa- 
tions of electron density and its derivatives are greatly 
facihtated whenever needed. 

Over the Mo K s  angular range, the two-term for- 
mula gives a poor fit for large angles, and addition 
of one more term is necessary. I t  is then sufficient to 
use a three-term formula: 

f(x) = A exp ( -ax~)+B exp ( -bx~)+C,  (4) 

with the condition 

A + B + C  = N . (5) 

The values of the constants A, B, a, b, are different 
from the values for the two-term formula. 

The only serious disadvantage of the above for- 
mulae is that  evaluation of the best values of the 
formula constants is not straightforward. I t  is a 
laborious procedure, and least-squares fitting must be 
done by successive approximations. For this reason 
only the constants of the two-term expansion have 
been calculated to date; an IBM 704 program has 
been designated to evaluate the constants of the three- 
term expansion. 

I t  should be noted that  the use of the Gaussian 


